1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
#include "raytracer/raytracer.h"
bool RayTracer::isShadowed(
glm::vec4 lightPosition,
float distanceToLight,
glm::vec4 directionFromIntersectionToLight,
glm::vec4 intersectionWorld,
const RayTraceScene &scene)
{
// normalize direction
directionFromIntersectionToLight = glm::normalize(directionFromIntersectionToLight);
// acceleration causes "bad jaggies" so we disable it for now
if (m_config.enableAcceleration)
{
RenderShapeData shapeData;
auto pBias = intersectionWorld + .001f * directionFromIntersectionToLight;
float t = traverseBVH(pBias, directionFromIntersectionToLight, shapeData, scene.m_bvh);
return t != FINF;
}
for (const RenderShapeData &s: scene.getShapes()) {
// convert this world ray to object space
glm::vec4 dObject = glm::normalize(
s.inverseCTM * directionFromIntersectionToLight);
glm::vec4 pObject = s.inverseCTM * intersectionWorld;
// see if there is an intersection
glm::vec4 newIntersectionObj = findIntersection(pObject, dObject, s);
if (newIntersectionObj.w == 1.f) // hit!
{
// check if the intersection is the same as the pObject
if (floatEquals(glm::distance(newIntersectionObj, pObject), 0.f, 0.001f))
{
// don't consider self-intersections
continue;
}
// check if this intersection is closer than the direction to the light
auto newIntersectionWorld = s.ctm * newIntersectionObj;
if (distanceToLight == FINF)
{
// if the light is infinitely far away light, then any non-self intersection is valid
return true;
}
float newDist = glm::distance(newIntersectionWorld, lightPosition);
if (newDist < distanceToLight - 0.001f)
{
// an object in front of the camera is the way -> shadow
return true;
}
}
}
return false;
}
|