aboutsummaryrefslogtreecommitdiff
path: root/src/server/chunker/pdf_chunker.py
diff options
context:
space:
mode:
authorbobzel <zzzman@gmail.com>2025-07-01 09:58:22 -0400
committerbobzel <zzzman@gmail.com>2025-07-01 09:58:22 -0400
commitb3e9d7473e46bd05baf978607cbc60dfc32a71b0 (patch)
tree38e43461f82569a245d40a93b5fef395ca71004d /src/server/chunker/pdf_chunker.py
parent496381c2f07031043c2330844bbcd09a0fc10b9d (diff)
parenta7eff29530d6e95058fee3eda6a71a7d168dc913 (diff)
Merge branch 'agent-paper-main' into joanne-tutorialagent
Diffstat (limited to 'src/server/chunker/pdf_chunker.py')
-rw-r--r--src/server/chunker/pdf_chunker.py41
1 files changed, 32 insertions, 9 deletions
diff --git a/src/server/chunker/pdf_chunker.py b/src/server/chunker/pdf_chunker.py
index e34753176..04d9f51a4 100644
--- a/src/server/chunker/pdf_chunker.py
+++ b/src/server/chunker/pdf_chunker.py
@@ -701,20 +701,43 @@ class Document:
:return: The generated summary of the document.
"""
- num_clusters = min(10, len(self.chunks)) # Set number of clusters for KMeans, capped at 10
- kmeans = KMeans(n_clusters=num_clusters, random_state=42) # Initialize KMeans with 10 clusters
- doc_chunks = [chunk['values'] for chunk in self.chunks if 'values' in chunk] # Extract embeddings
- cluster_labels = kmeans.fit_predict(doc_chunks) # Assign each chunk to a cluster
+ # num_clusters = min(10, len(self.chunks)) # Set number of clusters for KMeans, capped at 10
+ # kmeans = KMeans(n_clusters=num_clusters, random_state=42) # Initialize KMeans with 10 clusters
+ # doc_chunks = [chunk['values'] for chunk in self.chunks if 'values' in chunk] # Extract embeddings
+ # cluster_labels = kmeans.fit_predict(doc_chunks) # Assign each chunk to a cluster
+
+ doc_chunks = [chunk['values'] for chunk in self.chunks if 'values' in chunk]
+ if not doc_chunks:
+ raise ValueError("No valid embedded chunks to summarize.")
+
+ # Remove duplicates (e.g., from OCR-ed blank pages or repeated captions)
+ unique_chunks = np.unique(np.array(doc_chunks), axis=0)
+
+ # Dynamically scale number of clusters to available signal
+ num_clusters = min(10, len(unique_chunks))
+ kmeans = KMeans(n_clusters=num_clusters, random_state=42).fit(unique_chunks)
+
+ # Predict cluster labels for original chunks (not just unique ones)
+ cluster_labels = kmeans.predict(np.array(doc_chunks))
+
# Select representative chunks from each cluster
selected_chunks = []
for i in range(num_clusters):
- cluster_chunks = [chunk for chunk, label in zip(self.chunks, cluster_labels) if label == i] # Get all chunks in this cluster
- cluster_embs = [emb for emb, label in zip(doc_chunks, cluster_labels) if label == i] # Get embeddings for this cluster
+ # cluster_chunks = [chunk for chunk, label in zip(self.chunks, cluster_labels) if label == i] # Get all chunks in this cluster
+ # cluster_embs = [emb for emb, label in zip(doc_chunks, cluster_labels) if label == i] # Get embeddings for this cluster
+
+ cluster_idxs = np.where(cluster_labels == i)[0]
+ if len(cluster_idxs) == 0:
+ continue # skip empty clusters (shouldn't happen after downsizing)
+
centroid = kmeans.cluster_centers_[i] # Get the centroid of the cluster
- distances = [np.linalg.norm(np.array(emb) - centroid) for emb in cluster_embs] # Compute distance to centroid
- closest_chunk = cluster_chunks[np.argmin(distances)] # Select chunk closest to the centroid
- selected_chunks.append(closest_chunk)
+ distances = [np.linalg.norm(doc_chunks[idx] - centroid) for idx in cluster_idxs]
+ closest_idx = cluster_idxs[int(np.argmin(distances))]
+ selected_chunks.append(self.chunks[closest_idx])
+ # distances = [np.linalg.norm(np.array(emb) - centroid) for emb in cluster_embs] # Compute distance to centroid
+ # closest_chunk = cluster_chunks[np.argmin(distances)] # Select chunk closest to the centroid
+ # selected_chunks.append(closest_chunk)
# Combine selected chunks into a summary
combined_text = "\n\n".join([chunk['metadata']['text'] for chunk in selected_chunks]) # Concatenate chunk texts