aboutsummaryrefslogtreecommitdiff
path: root/losses.py
diff options
context:
space:
mode:
authorDavid Doan <daviddoan@davids-mbp-3.devices.brown.edu>2022-05-04 16:40:39 -0400
committerDavid Doan <daviddoan@davids-mbp-3.devices.brown.edu>2022-05-04 16:40:39 -0400
commitc70019f1a6e03d4325881c5beeedb653a752c975 (patch)
tree192160d7cfc4a65f8bc27855a908220750929a41 /losses.py
parent6d4c7a0608a91e3a94d1b174aa9094616c778cb6 (diff)
added a dataset, tried testing (unsuccessfully)
Diffstat (limited to 'losses.py')
-rw-r--r--losses.py16
1 files changed, 8 insertions, 8 deletions
diff --git a/losses.py b/losses.py
index 542aa144..851b50b3 100644
--- a/losses.py
+++ b/losses.py
@@ -1,6 +1,6 @@
import tensorflow as tf
from tensorflow.keras.layers import \
- Conv2D, MaxPool2D, Dropout, Flatten, Dense, AveragePool2D
+ Conv2D, MaxPool2D, Dropout, Flatten, Dense, AveragePooling2D
import numpy as np
@@ -28,13 +28,13 @@ class YourModel(tf.keras.Model):
activation="relu", name="block1_conv1"),
Conv2D(64, 3, 1, padding="same",
activation="relu", name="block1_conv2"),
- AveragePool2D(2, name="block1_pool"),
+ AveragePooling2D(2, name="block1_pool"),
# Block 2
Conv2D(128, 3, 1, padding="same",
activation="relu", name="block2_conv1"),
Conv2D(128, 3, 1, padding="same",
activation="relu", name="block2_conv2"),
- AveragePool2D(2, name="block2_pool"),
+ AveragePooling2D(2, name="block2_pool"),
# Block 3
Conv2D(256, 3, 1, padding="same",
activation="relu", name="block3_conv1"),
@@ -42,7 +42,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block3_conv2"),
Conv2D(256, 3, 1, padding="same",
activation="relu", name="block3_conv3"),
- AveragePool2D(2, name="block3_pool"),
+ AveragePooling2D(2, name="block3_pool"),
# Block 4
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block4_conv1"),
@@ -50,7 +50,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block4_conv2"),
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block4_conv3"),
- AveragePool2D(2, name="block4_pool"),
+ AveragePooling2D(2, name="block4_pool"),
# Block 5
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block5_conv1"),
@@ -58,7 +58,7 @@ class YourModel(tf.keras.Model):
activation="relu", name="block5_conv2"),
Conv2D(512, 3, 1, padding="same",
activation="relu", name="block5_conv3"),
- AveragePool2D(2, name="block5_pool"),
+ AveragePooling2D(2, name="block5_pool"),
]
for layer in self.vgg16:
layer.trainable = False
@@ -71,7 +71,7 @@ class YourModel(tf.keras.Model):
for layer in self.vgg16.layers:
# pass the x through
x = layer(x)
- print("Sotech117 is so so sus")
+ # print("Sotech117 is so so sus")
# save the output of each layer if it is in the desired list
if layer.name in self.desired:
@@ -126,7 +126,7 @@ class YourModel(tf.keras.Model):
return L_style
def train_step(self):
- with tf.GradientTape as tape:
+ with tf.GradientTape() as tape:
loss = self.loss_fn(self.content_image, self.style_image, self.x)
gradients = tape.gradient(loss, self.x)
self.optimizer.apply_gradients(zip(gradients, self.x))