aboutsummaryrefslogtreecommitdiff
path: root/model.py
diff options
context:
space:
mode:
authorMichael Foiani <sotech117@michaels-mbp-4.devices.brown.edu>2022-05-09 01:15:32 -0400
committerMichael Foiani <sotech117@michaels-mbp-4.devices.brown.edu>2022-05-09 01:15:32 -0400
commit13826824ec58e85557efb3a12fb0456ffb20e46d (patch)
treee656abe2f8338860710bba1224c08ba5cd8bc0fa /model.py
parenta0870ac3f1f84278c5b9fe7f78f6b1af1d1f33e9 (diff)
Comment code, add example images, and rename files
Diffstat (limited to 'model.py')
-rw-r--r--model.py138
1 files changed, 138 insertions, 0 deletions
diff --git a/model.py b/model.py
new file mode 100644
index 00000000..d8ce4c88
--- /dev/null
+++ b/model.py
@@ -0,0 +1,138 @@
+import tensorflow as tf
+import numpy as np
+from tensorflow.keras.layers import \
+ Conv2D, AveragePooling2D
+from skimage import transform
+import hyperparameters as hp
+
+
+class YourModel(tf.keras.Model):
+ """ Your own neural network model. """
+
+ def __init__(self, content_image, style_image):
+ super(YourModel, self).__init__()
+
+ # --------------------------------------------------------------------------------------------------------------
+ # PART 1 : preprocess/init the CONTENT, STYLE, and CREATION IMAGES #
+ # --------------------------------------------------------------------------------------------------------------
+ # 1) resize the content and style images to be the same size
+ self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True,
+ preserve_range=True)
+ self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True, preserve_range=True)
+
+ # 2) convert the content and style images to float32 tensors for loss functions (from uint8)
+ self.content_image = tf.image.convert_image_dtype(self.content_image, tf.float32)
+ self.style_image = tf.image.convert_image_dtype(self.style_image, tf.float32)
+
+ # 3) set the image we are creating as a copy of the tensor that represents the content image
+ # (we do this to give the creation image a good starting point)
+ image = tf.image.convert_image_dtype(content_image, tf.float32)
+ self.x = tf.Variable([image])
+
+ # --------------------------------------------------------------------------------------------------------------
+ # PART 2 : load and configure vgg_16 network use (without classification head) #
+ # --------------------------------------------------------------------------------------------------------------
+ # 1) load the pretrained vgg_16 network
+ self.vgg16 = tf.keras.applications.VGG16(include_top=False, weights='vgg16_imagenet.h5')
+ self.vgg16.trainable = False
+
+ # 2) define the layers of the vgg_16 network from which we will extract the content and style features
+ self.photo_layers = ['block5_conv2']
+ self.style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1']
+
+ self.num_photo_layers = len(self.photo_layers)
+ self.num_style_layers = len(self.style_layers)
+
+ # 3) get the output (filters and biases) for the defined photo and style layers above
+ # only using one filter for the photo layer, so oonly that outpur is needed for our model
+ p_output = self.vgg16.get_layer(self.photo_layers[0]).output
+
+ # using multiple filters for the style layers, so we to create the Gram Matrix from each style layers' output
+ style_output = []
+ for layer in self.style_layers:
+ style_output.append(self.vgg16.get_layer(layer).output)
+
+ # map each style layer output to its Gram Matrix
+ G = [self.__get_gram(x) for x in style_output]
+
+ # 4) create the vgg16 model from the photo and style layers
+ self.vgg16 = tf.keras.Model([self.vgg16.input], [p_output, G])
+
+ # --------------------------------------------------------------------------------------------------------------
+ # PART 3 : assign our optimizers, loss weights, and loss/style targets #
+ # --------------------------------------------------------------------------------------------------------------
+ # 1) use the adam optimizer with hyperparameters defined in the hyperparamters.py
+ self.optimizer = tf.keras.optimizers.Adam(learning_rate=hp.learning_rate, beta_1=hp.beta_1, epsilon=hp.epsilon)
+
+ # 2) assign the loss weights from hyperparameters.py
+ self.content_weight = hp.alpha
+ self.style_weight = hp.beta
+
+ # 3) get the targets that serve as the baseline of the content and style loss calculations
+ # covert images to their float -> numpy representations to call on our model for the targets
+ img_to_np = lambda img: np.array([img * 255])
+ # content target is the first output of the vgg16 model since it is the output of the photo layer
+ self.content_target = self.vgg16(img_to_np(content_image))[0]
+ # style target is the second output of the vgg16 mode, the Gram Matrix of the style layers
+ self.style_target = self.vgg16(img_to_np(style_image))[1]
+
+ # here for convention - here is the forward pass
+ def call(self, x):
+ # call only onto our created model
+ x = self.vgg16(x * 255)
+ return x
+
+ def loss_fn(self, x):
+ # since our loss depends on the result of the forward pass (call), we call and get the results
+ x = self.call(x)
+
+ # helper functions to calculate the content and style loss
+ content_l = self.__content_loss(x[0], self.content_target)
+ style_l = self.__style_loss(x[1], self.style_target)
+
+ # return the weighted sum of the content and style loss
+ return (self.content_weight * content_l) + (self.style_weight * style_l)
+
+ # called for each epoch and updates the model based on the optimizer and loss function
+ def train_step(self, epoch):
+ with tf.GradientTape(watch_accessed_variables=False) as tape:
+ # watch how the image changes for backpropagation
+ tape.watch(self.x)
+
+ # calculate the loss
+ loss = self.loss_fn(self.x)
+ gradients = tape.gradient(loss, self.x)
+
+ # print the progress of the training and loss
+ print('\rEpoch {}: Loss: {:.4f}'.format(epoch, loss), end='')
+
+ # update the optimizer based on the gradients
+ self.optimizer.apply_gradients([(gradients, self.x)])
+ # update the image we are creating
+ self.x.assign(tf.clip_by_value(self.x, clip_value_min=0.0, clip_value_max=1.0))
+
+ # ------------------------------------------------------------------------------------------------------------------
+ # (STATIC) HELPER FUNCTIONS THAT IMPLEMENT THE CALCULATIONS FOR THE GRAM MATRIX AND LOSSES FROM THE REFERENCE
+ # PAPER (https://arxiv.org/pdf/1508.06576.pdf)
+ # ------------------------------------------------------------------------------------------------------------------
+ @staticmethod
+ def __content_loss(photo_layers, input_layers):
+ return tf.reduce_mean(tf.square(photo_layers - input_layers))
+
+ @staticmethod
+ def __style_loss(art_layers, input_layers):
+ # each layer used for style has a loss
+ layer_losses = []
+ for created, target in zip(art_layers, input_layers):
+ reduced = tf.reduce_mean(tf.square(created - target))
+ layer_losses.append(reduced)
+ # the total style loss is the sum of each style layer loss
+ return tf.add_n(layer_losses)
+
+ @staticmethod
+ def __get_gram(style_output):
+ style_shape = tf.shape(style_output)
+ output = tf.linalg.einsum('bijc,bijd->bcd', style_output, style_output)
+ dimensions = style_shape[1] * style_shape[2]
+ dimensions = tf.cast(dimensions, tf.float32)
+ return output / dimensions