diff options
Diffstat (limited to 'model.py')
-rw-r--r-- | model.py | 138 |
1 files changed, 138 insertions, 0 deletions
diff --git a/model.py b/model.py new file mode 100644 index 00000000..d8ce4c88 --- /dev/null +++ b/model.py @@ -0,0 +1,138 @@ +import tensorflow as tf +import numpy as np +from tensorflow.keras.layers import \ + Conv2D, AveragePooling2D +from skimage import transform +import hyperparameters as hp + + +class YourModel(tf.keras.Model): + """ Your own neural network model. """ + + def __init__(self, content_image, style_image): + super(YourModel, self).__init__() + + # -------------------------------------------------------------------------------------------------------------- + # PART 1 : preprocess/init the CONTENT, STYLE, and CREATION IMAGES # + # -------------------------------------------------------------------------------------------------------------- + # 1) resize the content and style images to be the same size + self.content_image = transform.resize(content_image, tf.shape(style_image), anti_aliasing=True, + preserve_range=True) + self.style_image = transform.resize(style_image, tf.shape(style_image), anti_aliasing=True, preserve_range=True) + + # 2) convert the content and style images to float32 tensors for loss functions (from uint8) + self.content_image = tf.image.convert_image_dtype(self.content_image, tf.float32) + self.style_image = tf.image.convert_image_dtype(self.style_image, tf.float32) + + # 3) set the image we are creating as a copy of the tensor that represents the content image + # (we do this to give the creation image a good starting point) + image = tf.image.convert_image_dtype(content_image, tf.float32) + self.x = tf.Variable([image]) + + # -------------------------------------------------------------------------------------------------------------- + # PART 2 : load and configure vgg_16 network use (without classification head) # + # -------------------------------------------------------------------------------------------------------------- + # 1) load the pretrained vgg_16 network + self.vgg16 = tf.keras.applications.VGG16(include_top=False, weights='vgg16_imagenet.h5') + self.vgg16.trainable = False + + # 2) define the layers of the vgg_16 network from which we will extract the content and style features + self.photo_layers = ['block5_conv2'] + self.style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] + + self.num_photo_layers = len(self.photo_layers) + self.num_style_layers = len(self.style_layers) + + # 3) get the output (filters and biases) for the defined photo and style layers above + # only using one filter for the photo layer, so oonly that outpur is needed for our model + p_output = self.vgg16.get_layer(self.photo_layers[0]).output + + # using multiple filters for the style layers, so we to create the Gram Matrix from each style layers' output + style_output = [] + for layer in self.style_layers: + style_output.append(self.vgg16.get_layer(layer).output) + + # map each style layer output to its Gram Matrix + G = [self.__get_gram(x) for x in style_output] + + # 4) create the vgg16 model from the photo and style layers + self.vgg16 = tf.keras.Model([self.vgg16.input], [p_output, G]) + + # -------------------------------------------------------------------------------------------------------------- + # PART 3 : assign our optimizers, loss weights, and loss/style targets # + # -------------------------------------------------------------------------------------------------------------- + # 1) use the adam optimizer with hyperparameters defined in the hyperparamters.py + self.optimizer = tf.keras.optimizers.Adam(learning_rate=hp.learning_rate, beta_1=hp.beta_1, epsilon=hp.epsilon) + + # 2) assign the loss weights from hyperparameters.py + self.content_weight = hp.alpha + self.style_weight = hp.beta + + # 3) get the targets that serve as the baseline of the content and style loss calculations + # covert images to their float -> numpy representations to call on our model for the targets + img_to_np = lambda img: np.array([img * 255]) + # content target is the first output of the vgg16 model since it is the output of the photo layer + self.content_target = self.vgg16(img_to_np(content_image))[0] + # style target is the second output of the vgg16 mode, the Gram Matrix of the style layers + self.style_target = self.vgg16(img_to_np(style_image))[1] + + # here for convention - here is the forward pass + def call(self, x): + # call only onto our created model + x = self.vgg16(x * 255) + return x + + def loss_fn(self, x): + # since our loss depends on the result of the forward pass (call), we call and get the results + x = self.call(x) + + # helper functions to calculate the content and style loss + content_l = self.__content_loss(x[0], self.content_target) + style_l = self.__style_loss(x[1], self.style_target) + + # return the weighted sum of the content and style loss + return (self.content_weight * content_l) + (self.style_weight * style_l) + + # called for each epoch and updates the model based on the optimizer and loss function + def train_step(self, epoch): + with tf.GradientTape(watch_accessed_variables=False) as tape: + # watch how the image changes for backpropagation + tape.watch(self.x) + + # calculate the loss + loss = self.loss_fn(self.x) + gradients = tape.gradient(loss, self.x) + + # print the progress of the training and loss + print('\rEpoch {}: Loss: {:.4f}'.format(epoch, loss), end='') + + # update the optimizer based on the gradients + self.optimizer.apply_gradients([(gradients, self.x)]) + # update the image we are creating + self.x.assign(tf.clip_by_value(self.x, clip_value_min=0.0, clip_value_max=1.0)) + + # ------------------------------------------------------------------------------------------------------------------ + # (STATIC) HELPER FUNCTIONS THAT IMPLEMENT THE CALCULATIONS FOR THE GRAM MATRIX AND LOSSES FROM THE REFERENCE + # PAPER (https://arxiv.org/pdf/1508.06576.pdf) + # ------------------------------------------------------------------------------------------------------------------ + @staticmethod + def __content_loss(photo_layers, input_layers): + return tf.reduce_mean(tf.square(photo_layers - input_layers)) + + @staticmethod + def __style_loss(art_layers, input_layers): + # each layer used for style has a loss + layer_losses = [] + for created, target in zip(art_layers, input_layers): + reduced = tf.reduce_mean(tf.square(created - target)) + layer_losses.append(reduced) + # the total style loss is the sum of each style layer loss + return tf.add_n(layer_losses) + + @staticmethod + def __get_gram(style_output): + style_shape = tf.shape(style_output) + output = tf.linalg.einsum('bijc,bijd->bcd', style_output, style_output) + dimensions = style_shape[1] * style_shape[2] + dimensions = tf.cast(dimensions, tf.float32) + return output / dimensions |