summaryrefslogtreecommitdiff
path: root/glm-master/test/core/core_func_geometric.cpp
blob: 7ef9c6838a97c23a68e7e1f8f61e210949132b71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <glm/geometric.hpp>
#include <glm/trigonometric.hpp>
#include <glm/ext/scalar_relational.hpp>
#include <glm/ext/vector_relational.hpp>
#include <glm/ext/vector_float1.hpp>
#include <glm/ext/vector_float2.hpp>
#include <glm/ext/vector_float3.hpp>
#include <glm/ext/vector_float4.hpp>
#include <glm/ext/vector_double2.hpp>
#include <glm/ext/vector_double3.hpp>
#include <glm/ext/vector_double4.hpp>
#include <limits>

namespace length
{
	int test()
	{
		float Length1 = glm::length(glm::vec1(1));
		float Length2 = glm::length(glm::vec2(1, 0));
		float Length3 = glm::length(glm::vec3(1, 0, 0));
		float Length4 = glm::length(glm::vec4(1, 0, 0, 0));

		int Error = 0;

		Error += glm::abs(Length1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Length2 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Length3 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Length4 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;

		return Error;
	}
}//namespace length

namespace distance
{
	int test()
	{
		float Distance1 = glm::distance(glm::vec1(1), glm::vec1(1));
		float Distance2 = glm::distance(glm::vec2(1, 0), glm::vec2(1, 0));
		float Distance3 = glm::distance(glm::vec3(1, 0, 0), glm::vec3(1, 0, 0));
		float Distance4 = glm::distance(glm::vec4(1, 0, 0, 0), glm::vec4(1, 0, 0, 0));

		int Error = 0;

		Error += glm::abs(Distance1) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Distance2) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Distance3) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Distance4) < std::numeric_limits<float>::epsilon() ? 0 : 1;

		return Error;
	}
}//namespace distance

namespace dot
{
	int test()
	{
		float Dot1 = glm::dot(glm::vec1(1), glm::vec1(1));
		float Dot2 = glm::dot(glm::vec2(1), glm::vec2(1));
		float Dot3 = glm::dot(glm::vec3(1), glm::vec3(1));
		float Dot4 = glm::dot(glm::vec4(1), glm::vec4(1));

		int Error = 0;

		Error += glm::abs(Dot1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Dot2 - 2.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Dot3 - 3.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
		Error += glm::abs(Dot4 - 4.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;

		return Error;
	}
}//namespace dot

namespace cross
{
	int test()
	{
		glm::vec3 Cross1 = glm::cross(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
		glm::vec3 Cross2 = glm::cross(glm::vec3(0, 1, 0), glm::vec3(1, 0, 0));

		int Error = 0;

		Error += glm::all(glm::lessThan(glm::abs(Cross1 - glm::vec3(0, 0, 1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
		Error += glm::all(glm::lessThan(glm::abs(Cross2 - glm::vec3(0, 0,-1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;

		return Error;
	}
}//namespace cross

namespace normalize
{
	int test()
	{
		glm::vec3 Normalize1 = glm::normalize(glm::vec3(1, 0, 0));
		glm::vec3 Normalize2 = glm::normalize(glm::vec3(2, 0, 0));

		glm::vec3 Normalize3 = glm::normalize(glm::vec3(-0.6, 0.7, -0.5));

		glm::vec3 ro = glm::vec3(glm::cos(5.f) * 3.f, 2.f, glm::sin(5.f) * 3.f);
		glm::vec3 w = glm::normalize(glm::vec3(0, -0.2f, 0) - ro);
		glm::vec3 u = glm::normalize(glm::cross(w, glm::vec3(0, 1, 0)));
		glm::vec3 v = glm::cross(u, w);

		int Error = 0;

		Error += glm::all(glm::lessThan(glm::abs(Normalize1 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
		Error += glm::all(glm::lessThan(glm::abs(Normalize2 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;

		return Error;
	}
}//namespace normalize

namespace faceforward
{
	int test()
	{
		int Error = 0;

		{
			glm::vec3 N(0.0f, 0.0f, 1.0f);
			glm::vec3 I(1.0f, 0.0f, 1.0f);
			glm::vec3 Nref(0.0f, 0.0f, 1.0f);
			glm::vec3 F = glm::faceforward(N, I, Nref);
		}

		return Error;
	}
}//namespace faceforward

namespace reflect
{
	int test()
	{
		int Error = 0;

		{
			glm::vec2 A(1.0f,-1.0f);
			glm::vec2 B(0.0f, 1.0f);
			glm::vec2 C = glm::reflect(A, B);
			Error += glm::all(glm::equal(C, glm::vec2(1.0, 1.0), 0.0001f)) ? 0 : 1;
		}

		{
			glm::dvec2 A(1.0f,-1.0f);
			glm::dvec2 B(0.0f, 1.0f);
			glm::dvec2 C = glm::reflect(A, B);
			Error += glm::all(glm::equal(C, glm::dvec2(1.0, 1.0), 0.0001)) ? 0 : 1;
		}

		return Error;
	}
}//namespace reflect

namespace refract
{
	int test()
	{
		int Error = 0;

		{
			float A(-1.0f);
			float B(1.0f);
			float C = glm::refract(A, B, 0.5f);
			Error += glm::equal(C, -1.0f, 0.0001f) ? 0 : 1;
		}

		{
			glm::vec2 A(0.0f,-1.0f);
			glm::vec2 B(0.0f, 1.0f);
			glm::vec2 C = glm::refract(A, B, 0.5f);
			Error += glm::all(glm::equal(C, glm::vec2(0.0, -1.0), 0.0001f)) ? 0 : 1;
		}

		{
			glm::dvec2 A(0.0f,-1.0f);
			glm::dvec2 B(0.0f, 1.0f);
			glm::dvec2 C = glm::refract(A, B, 0.5);
			Error += glm::all(glm::equal(C, glm::dvec2(0.0, -1.0), 0.0001)) ? 0 : 1;
		}

		return Error;
	}
}//namespace refract

int main()
{
	int Error(0);

	Error += length::test();
	Error += distance::test();
	Error += dot::test();
	Error += cross::test();
	Error += normalize::test();
	Error += faceforward::test();
	Error += reflect::test();
	Error += refract::test();

	return Error;
}